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1. Introduction 
 Original images formed by different types of systems (digital cameras, remote sensing imagers, 
medical sensors, etc.) are noisy due to various phenomena like internal and external noise, transmission 
errors, limited time of received signal registration, operation principle of imaging system and so on. 
Because of these factors, image filtering has become an important stage of image pre-processing in many 
applications [1, 2]. Numerous filters intended for noise removal have been designed in recent fourty 
years. Since the end of sixtieth of the previous century, nonlinear filters gained popularity as a tool able to 
incorporate non-stationary nature of images as information processes (2D fields) [1-4]. Main attention in 
70-th and 80-th was paid to nonlinear filters based on order statistics thoroughly analyzed and discussed 
in [2, 5, 6]. Their advantages and limitations were understood. In 90-th a lot of efforts were spent to 
getting around shortcomings of nonlinear non-adaptive filters. Investigations concentrated in two main 
directions: design of locally adaptive filters [7, 8] and transform based techniques [9, 10] although it is 
worth saying that there are methods that combine both approaches [11, 12]. Considerable attention was 
paid to incorporating knowledge on noise type and statitics for better removal of particular types of noise 
like impulse [13], speckle [14], etc.   
 Alongside with sufficient achievements in theory and practice, understanding of a fact that used 
models of noise were not adequate enough was coming steadily. Recall that typical simplified models are 
i.i.d. Gaussian noise with zero mean and constant variance often used in design of filters for optical 
images [1, 3] as well as i.i.d. pure multiplicative noise with unity mean and constant relative variance 
exploited in filtering of radar and ultrasound images [7, 11, 14]. Impulse noise that with equal probability 
can corrupt pixel values is considered often enough [2, 13], mixed noise models are quite common as well 
[1, 2].  

However, recent investigations show that more complicated models of noise are worth applying 
to provide better adequateness to practice and, hence, to design and apply more efficient filters. To give a 
few examples, let us mention film-grain and other signal dependent noise models [12, 15, 16], spatially 
correlated noise models [17, 18], impulse burst and streak noises [19, 20], mixed multiplicative and 
additive noise model [21], etc. Note that often statistical and spatial correlation characteristics of noise or 
some part of them are not known in advance [21, 22].  

If this takes place, one might follow two ways. One way is to apply a filter that in no way exploits 
a priori information on noise type and its statistical and spatial correlation characteritics. There are quite 
many examples of such filters: standard mean, median, α-trimmed mean, Wilcoxon, etc [2]. However, 
these filters often do not produce a desirable trade-off of basic properties (noise suppressionm edge-detai-
texture preservation, removal of impulses, etc.) [2]       

Another way is to exploit available a priori information and, if possible, get additional 
information from an image at hand and then to use it. In this connection, there exist blind methods for 
noise type determination [22]. If a noise type model is a priori known or correctly pre-determined, it 
becomes possible to estimate statistical characteristics for several given noise types like pure additive 
noise, speckle and multiplicative noise, special kinds of mixed noise (see [23] and refernces therein). 
Note that this can be done in a blind manner.   

However, there are some practical limitations for this approach. First, currently existing version 
of the system for blind determination of noise type [22, 24]) does no allow recognizing all situations 
(noise types and their combinations) possible in practice. For example, till the moment such practically 
important types of noise as Poisson and film-grain ones cannot be recognized. Second, commonly it is 

                                                 
 
 
 



assumed that noise local variance has some dependence on local mean and this dependence is rather 
simple. Examples are Poisson and film-grain noises, pure multiplicative noise, etc. In all these cases, 
dependence of local variance on local mean is a monotonically increasing function [7, 10, 12]. However, 
there are practical situations when this dependence is not monotonic (one example will be given in the 
next Section). Moreover, local variance of noise can be also an unknown function of spatial coordinates 
(examples of such practical situations and reasons for arising noise with such properties are considered in 
[25]). Then, it becomes very difficult to decide how to “fit” a proper dependence (and is it possible to do 
this at all) and how to denoise such images.  

It is worth mentioning here that if dependence of noise local variance on local mean or image 
coordinates (pixel indices) is a priori known or pre-determined, it is easy to perform image filtering that 
exploits such information about local variance. Examples of filters that are able to do this are sigma filter 
[26], its modifications [27], and DCT based filters [10]. Another, more complicated case happens when 
aforementioned dependence is unknown and cannot be determined. Below we pay main attention just to 
this case.  

The task of non-stationary noise removal is not often and thoroughly considered in literature. 
Here we can mention the paper [28] as well as our recent papers [27, 29]. One of the reasons is 
complexity of this task. Complexity deals with the necessity to solve several particular problems. First, if 
a local transform based filtering (e.g., DCT based) is applied, one needs to set local thresholds in blocks 
and these local thresholds are to be adjusted to noise local statistics. It is not easy to obtain appropriately 
accurate blind estimates of noise statistics for entire image at hand even if noise is stationary [23, 30, 31]. 
Then, it is possible to expect that it is much more difficult to provide quite accurate local estimates of 
noise statistics in blocks or scanning windows of size 8x8 or 7x7. Second, it is desirable to adapt filter 
parameters to local properties of image content. Then, similar problem of providing reliable estimates or 
decisions for noisy data samples of small size arises.  

These considerations and problems can be not very clear until more detailed analysis of noise 
properties is done and a structure of DCT-based local filtering is described. These analysis and 
description are given the next two Sections. Section 4 deals with main contribution of this paper, namely, 
property analysis for local estimates of noise standard deviation and image heterogeneity indicator. The 
latter is based on robust estimator of kurtosis (REK) [32, 33] applied in DCT domain [29]. We 
demonstrate that by analysis of REK histogram it is also possible to undertake decision is non-stationary 
noise spatially correlated or not. In Section 5, two local adaptive DCT based filters (hard switching one 
proposed in [29] and a new soft switching one) are described and studied by numerical simulations for a 
set of test images. Finally, we give some real life image processing examples in Section 6.                                

                             
2. Initial assumptions concerning noise properties and problems of their local estimation 

 An initial assumption concerning non-stationary noise statistical properties is that in image 
homogeneous regions noise is quasi-Gaussian with zero mean but with unknown variance. The 
assumption of Gaussianity holds for many practical situations. Certainly, it holds for pure additive noise 
[1]. But this assumption is also valid for pure multiplicative noise in side-look aperture radars [7, 11] and 
in synthetic aperture radars with a large number of looks [10], Poisson noise except image regions with 
very low mean intensity [12, 34], component images of color, multispectral and hyperspectral remote 
sensing data [1, 35-37]. The only obvious declinations of noise statistics from being close to Gaussian 
noise are images formed by coherent imaging systems with one or few looks [10], [14].  
 Our second assumption is that noise variance in image homogeneous regions, in general, can be 
not constant but it changes slowly. For example, noise variance can change depending upon vertical or 
horizontal coordinate of an image as this happens for images formed by maritime radar where image 
horizontal coordinate is associated with distance (see details in [27]). At the same time, noise variance 
might have changes (variations) in neighborhood of edges. This can occur if noise contains few 
components (for example, additive and signal dependent). Thus, it is possible to rely on hypothesis of 
quasi-stationarity (HQS) of noise for image fragments (blocks) of rather small size but only if a given 
block does not correspond to image heterogeneity.  
 A third assumption is that, in general, non-stationary noise can be either spatially uncorrelated or 
spatially correlated. Strictly saying, it is not absolutely correct to consider correlation properties of non-
stationary processes. But we are mainly interested in “close neighborhood” correlation, i.e., is it possible 
to consider values of noise in neighbor pixels independent or not. The reasons why it is important are 
threefold. First, spatially correlated noise is more hardly to suppress than uncorrelated one [7, 17, 18, 38]. 
Second, if noise is spatially correlated, this can influence accuracy of methods used for estimation of 



noise statistics, both global [31] and local [29]. Third, for spatially correlated noise, one needs to have in 
advance or to obtain estimates of noise spatial correlation properties (e.g., normalized spatial spectrum) in 
order to improve noise suppression efficiency [18] by using operations similar or equivalent to pre-
whitening. Note that such operations can lead to improvement of filter performance by 1...2 dB [18] in 
terms of both traditional metrics like MSE or PSNR and specialized metrics like PSNR-HVS that take 
into account peculiarities of human visual system [39, 40].  
 Therefore, we have come to several mutually dependent problems. At the very beginning, it is 
desirable to determine is noise spatially correlated or not. For this purpose, according to experience in 
[18] one might need to have quite many (about 1000 and, desirably, more) non-overlapping blocks that 
belong to image quasi-homogeneous regions. If such blocks are available it could be possible not only to 
determine is noise spatially correlated or not but also to estimate normalized spatial spectrum of noise. 
But how to select such blocks without knowledge of non-stationary noise local variance? 

Here we should remind that under condition of known (predicted) local variance of noise 2
loc prσ , 

discrimination of image homogeneous blocks is not a difficult task. It is enough to calculate local 
variance in a block as 2 2( ) /( 1)loc bl pq bl

pq G
I I Gσ

∈

= − −∑  where pqI  denotes a pq-th pixel of a considered 

image, blI  is a given block mean, G is a set of pixels that belong to a given block, G  defines block size 
(expressed in number of pixels). Then a rule for discriminating image homogeneous blocks can be the 
following [18]: if 2 2

loc bl loc prσ κσ≤ , a block is homogeneous and vice versa. Here κ  is a factor that depends 
upon noise statistics and block size. For 5x5 blocks (scanning windows), κ  can be set in the limits 
1.3...1.4 [18]. This can be done if there exists a known or pre-established dependence of 2

loc prσ  on local 
mean 2: ( ).loc loc locI f Iσ =  Then, after calculating blI  it is possible to calculate predicted local variance for a 
given block as 2 ( )loc pr blf Iσ =  and to use it for finding image homogeneous blocks. But if such prediction 
is impossible due to unknown statistics of non-stationary noise, one has to search for other methods for 
discriminating blocks. Below, in Section 4, we will show how this can be done.  

Let us give an example of practical situation when prediction of noise statistics 2 ( )loc locf Iσ =  can 
be done hardly since this dependence possesses atypical properties. Consider a special test image (of size 
512x512 pixels) that has 16 horizontal strips of width of 32 pixels. For each strip, the true values tr

ijI  are 
the same, i.e. constant and equal to 20 (for the leftmost strip), 30, 40,…, 170. This image has been 
corrupted by a signal-dependent noise of the following model of noisy image  

 
n P
ij ij ijI I n= + ,                                   (1) 

 
where n

ijI  denotes an ij-th image pixel corrupted by Poisson noise with the true value equal to tr
ijI , ijn  is 

zero mean i.i.d. additive Gaussian noise. This model simulates real life situation of noise in R, G, and B 
components of raw color images under assumption that variance of fluctuations 2 tr

P ij ijIσ =  induced by 
Poisson noise for majority of image pixels is larger than variance of additive noise 2σ  considered to be 
constant [41]. In our simulations 2 10σ = , therefore, the following conditions have been satisfied: 

2 23 0tr
ij P ijI σ σ− + >  and 2 23 255tr

ij P ijI σ σ+ + <  for any 20,30,...,170tr
ijI =  to keep 8-bit representation of 

data. Due to this, clipping effects in simulated noise are very seldom and their influence on further analysis 
is negligible. The noisy image is shown in Fig. 1,a.  

 



a b 
Fig. 1. The original noisy test image (a) and this image after Gamma-correction ( 0.6γ = ) (b) 

                     
 A typical operation used in digital cameras and other devices is Gamma correction [42]. In this 
case, a transformed (corrected) image is obtained as   

 
( )n

ij ijI f Iγ
γ= ,                                   (2) 

 
where (.)fγ  is a monotonous function that defines gamma correction. Suppose that this function is of the 
form 1255( / 255) 255 ( )n n

ij ij ijI I Iγ γ γ γ−= =  where the parameter 1γ < . The corrected test image 
, 1,...,512, 1,...,512ijI i jγ = =  is presented in Fig. 1,b ( 0.6γ = ).  

Consider a scatter-plot of local estimates of variance obtained as 2 2( ) /( 1)
k

loc k pq bl k
ij G

I I Gσ
∈

= − −∑  

where bl kI  denote a k-th block mean and corresponds to scatter-plot horizontal axis. The block size is 8x8. 
The blocks do not overlap. The scatter-plot for the original image , 1,...,512, 1,...,512n

ijI i j= =  is presented 
in Fig. 2,a. As it is seen, there are 16 clusters that correspond to means for 16 strips of the test image. 
Cluster centers’ positions can be well approximated by the straight line 2 2 2 2( ) tr

loc PI Iσ σ σ σ= + = +  which 
is shown in Fig. 2,a.      
 

a b 
Fig. 2. Scatter-plots of local estimates of variance for original noisy test image (a) and corrected image (b) 
 



 Assume that the noisy test image for a given pixel is represented as n tr
ij ij ijI I I= + Δ  where ijIΔ  

relates to both noise components (additive and Poissonian) and has zero mean and variance 
2 2 2 2 tr
ij P ij ijIσ σ σ σ= + = + . Then, if tr

ij ijIσ <<  and (.)fγ  is a monotonous smooth function, it is possible to 
obtain 1 1 1255 ( ) 255 (( ) ( ) )tr tr tr

ij ij ij ij ij ijI I I I I Iγ γ γ γ γ γγ− − −≈ + Δ = + Δ . Thus, the mean of ijI γ  is equal to 1255 ( )tr
ijIγ γ−  

whilst its variance is 2 2 2 2 2 2 2( ) 255 ( ) ( )tr tr tr
ij ij ijI I Iγ γ

γσ γ σ− −≈ +  (the expressions are valid if tr
ij ijIσ << , otherwise 

more exact derivations are needed).  
Let us ignore the positive constant term 2 2 2255 γ γ−  and analyze only the positive valued function 

2 2 2( ) ( )tr tr
ij ijI Iγ σ− + . For the considered case of 1γ <  the factor 2 2( )tr

ijI γ −  decreases with increasing of tr
ijI  

whilst the factor 2( )tr
ijIσ +  increases. Thus, depending upon γ  and 2σ  the function 2 ( )tr

ijIγσ  can be 
monotonically increasing, monotonically decreasing or having maximum. The first case is typical for 
many types of images. The latter two cases are specific but they can also take place in practice. Let us 
demonstrate one of them for the considered test image. Consider 0.6γ = . The scatter-plot of local 
variance estimates for the corrected image , 1,...,512, 1,...,512ijI i jγ = =  is presented in Fig. 2,b. As seen, the 
means for strips have changed and are approximately equal to 1255 ( )tr

ijIγ γ− . Sixteen clusters remained but 
their centers are now approximately positioned on the curve 2 2 2 2 2 2 2( ) 255 ( ) ( )tr tr tr

ij ij ijI I Iγ γ
γσ γ σ− −= +  presented 

at the same plot.  
 The obtained results reveal, at least, two things. First, for images at hand that have been obtained 
by subjecting some original data to unknown transformations or to transformations of a known type with 
unknown parameters, the dependence 2 ( )loc locf Iσ =  can be not only monotonously increasing as it 
happens often but also decreasing or having a local extremum. Second, if one tries to fit some curve to an 
obtained scatter-plot (as this is done in a robust manner according to several already proposed approaches 
[21, 41]) it is necessary to use, at least, second order polynomials 2 2

0 0 0loc loc loca b I c Iσ = + +  where 0 0 0, ,a b c  
are polynomial coefficients and 0 0a ≥  in order to provide non-negative values of local variance for 

0locI = . Coefficients 0b  and 0c  can be arbitrary, both negative and positive. While fitting a curve, it is 
also necessary to keep in mind that 2 2

0 0 0loc loc loca b I c Iσ = + +  should be non-negative for all range of locI . To 
our opinion, these recommendations can be helpful in future research to be held for solving the task of 
blind estimation of dependence 2 ( )loc locf Iσ =  for real life images.   
 

3. Structure of DCT-based local adaptive filtering 
 Let us rely on filtering based on DCT for locally adaptive removal of non-stationary noise. DCT 
based filtering is a good choice for our purpose because of several reasons. To understand them, let us 
recall basic steps and principles of DCT based filtering. First, it is carried out for an entire image in 
blocks-wise manner. The most typical case is the use of fixed size blocks (e.g., 8x8 [10, 11]) although 
block size and shape can be adapted as well [12]. Due to filtering in blocks, the method is well adapted to 
local quasi-stationarity of non-stationary noise. Second, DCT based filtering is carried out in four main 
stages:  

1) performing forward DCT in each block with obtaining spectral coefficients ( , , , )D k l n m  where 
indices k,l relate to DCT (spectral) coefficients and indices n,m denote a position (coordinates) of 
the left upper corner of an image block;     

2) obtaining a set of thresholded spectral coefficients ( , , , )TD k l n m  by comparing absolute values of 
( , , , )D k l n m  to local thresholds ( , , , )T k l n m   that , in general, can depend on all four indices, i.e. on 

block position and, respectively, local noise statistics as well as on spatial frequencies defined by 
indices k,l;   

3) applying inverse DCT to the set of ( , , , )TD k l n m ; 
4) averaging the obtained filtered values for each image pixel if overlapping blocks are used.  

This procedure of filtering allows adapting to local image content by remaining those spectral 
coefficients that are large enough by absolute values and, most likely, correspond to image information 
component. Note that DCT is one of the best decorrelation transforms approaching to Karhunen-Loeve 
transform. At the same time, proper setting of local thresholds for each block produces noise suppression 
and provides opportunity to adapt to spatial correlation of noise if this information is available. The use of 
overlapping blocks leads to considerable improvement of filtering performance in terms of PSNR (up to 



2...3 dB) but it results in more computations in comparison to image processing in non-overlapping 
blocks [43]. 

As seen, the key item in DCT based filtering is a threshold setting. Since DCT is a linear 
orthogonal transform, each spectral coefficient ( , , , ) ( , , , ) ( , , , )I nD k l n m D k l n m D k l n m= +  where ( , , , )ID k l n m  
corresponds to true image and ( , , , )nD k l n m  to noise in a block defined by its left upper corner coordinates 
n and m. If one uses hard thersholding for which ( , , , ) 0 ( , , , ) ( , , , )TD k l n m if D k l n m T k l n m= < , then both 
positive and negative effects are provided. Suppose that ( , , , ) ( , , , ) ( , , , )I nD k l n m D k l n m T k l n m+ < . Then, 
assigning zero value to a given spectral coefficient ( , , , )D k l n m  leads to “killing” the component 

( , , , )nD k l n m  and this is a positive effect. Simultaneously zero value is, in fact, assigned to ( , , , )ID k l n m  
and this introduces distortions into filtered image. Thus, thresholding has both positive and negative 
outcomes. Within a given block, variance of removed noise 2 ( , )remov n mσ  is proportional to the following 

sum 
8 8

2

1 1

( , , , ) ( , , , )n
k l

D k l n m k l n mδ
= =
∑∑  where ( , , , ) 1 ( , , , ) ( , , , )k l n m if D k l n m T k l n mδ = <  and ( , , , ) 0k l n mδ =  

otherwise. Similarly, variance of introduced distortions 2 ( , )dist n mσ  is proportional to 
8 8

2

1 1

( , , , ) ( , , , )I
k l

D k l n m k l n mδ
= =
∑∑ . Moreover, some noise is remained and its variance 2 ( , )rem n mσ  is proportional 

to 
8 8

2

1 1
( , , , )(1 ( , , , ))n

k l
D k l n m k l n mδ

= =

−∑∑ . This means that threshold increase leads to increase of 2 ( , )remov n mσ , 

decrease of 2 ( , )rem n mσ  (both effects are positive), but 2 ( , )dist n mσ  increases (this effect is negative).  
Theoretically, threshold setting for each block can be formulated as a task of minimization of the 

sum 2 2( , ) ( , )rem distn m n mσ σ+ , but practically it has not been solved yet since for each spectral component 
one has only the sum ( , , , ) ( , , , ) ( , , , )I nD k l n m D k l n m D k l n m= +  but not each term of this sum separately. 
Because of this, in practice ( , , , )T k l n m  is commonly set proportional to local standard deviation of noise 
as ( , , , )k l n mβσ  where β  is a proportion factor.   

Several practical situations are possible. If one deals with i.i.d. additive Gaussian noise with a 
priori known variance 2

addσ , the threshold can be set fixed as addT βσ= . If it is known that noise is 

additive, i.i.d., with PDF close to Gaussian and its variance 2ˆaddσ  is pre-estimated, then one can use fixed 

threshold ˆaddT βσ=  under assumption that the estimate 2ˆaddσ  is accurate enough. If noise is pure 

multiplicative and spatially uncorrelated with a priori known or pre-estimated variances 2
μσ , 2ˆμσ , 

respectively, then the threshold becomes to be locally adaptive: ( ) ( ), ,T n m I n mμβσ=  or 

( ) ( )ˆ, ,T n m I n mμβσ=  since it is needed to estimate (calculate) local mean ( ),I n m  for each block. 

Note that here ( ),I n mμσ  or ( )ˆ ,I n mμσ  are, in fact, estimates of noise standard deviation in an nm-th 

block ( )ˆ ,loc n mσ . In more generalized case of spatially uncorrelated noise and a priori known 

dependence ( )2 =loc locf Iσ , local threshold is to be set as ( ) ( )( ), ,=T n m f I n mβ  where 

( )( ),f I n m  serves as an estimate of noise standard deviation in a given block.  

In all these cases of spatially uncorrelated noise, local threshold depends only upon block 
coordinates defined by n and m. If noise is spatially correlated with a priori known normalized DCT 
power spectrum ( ),normW k l  (supposed to be independent on spatial coordinates), local threshold 
becomes also dependent on indices k and l that relate to DCT components (frequencies). Then, for each 
block the threshold ( ),T n m  as determined above for each particular noise type is also multiplied by 

( ),normW k l  [18]. Hence, in general case, it becomes a function of four indices: k, l, n, and m.  

The parameter β  is commonly set fixed and approximately equal to 2.6 [10, 18, 43]. Such choice 
is motivated by the fact that for most images and noise characteristics it provides peak signal-to-noise 
ratio (PSNR) close to maximally reachable. More exactly, optimal β  that provides maximal PSNR can 



slightly deviate from 2.6. Optimal β  is slightly larger than 2.6 for images with comparatively simple 
structure (i.e., for images that do not contain a lot of texture, small details and sharp high contrast edges) 
and if noise level is high enough (i.e., if PSNR for original noisy image is relatively small). On the 
contrary, optimal β  slightly smaller than 2.6 can take place for highly textural images and/or if noise 
level is small enough. Moreover, analysis carried out in the paper [11] shows that for textural regions it is 
reasonable to set β  about 2.2. In fact, setting β  smaller than 2.6 is also reasonable for other types of 
image heterogeneous fragments like edge and detail neighborhoods. Below, for simplicity, we mainly 
concentrate on considering fixed β  equal to 2.6 but take aforementioned observations into account. 

Summarizing analysis and properties of DCT based filtering given above, it is possible to 
conclude the following: 

1) DCT based filtering is a denoising tool that allows adapting to different types of noise by 
setting a proper local threshold under assumption that one has a “good” prediction or estimation of noise 
local standard deviation ( )ˆ ,loc n mσ ; 

2) Then, a local threshold can be set directly proportional to this local estimate of noise standard 
deviation ( )ˆ ,loc n mσ  where proportionality factor β  is recommended to be fixed and equal to 2.6; 

3) If noise is spatially correlated, the situation ones deals with is more complicated; it becomes 
necessary to adapt not only to noise standard deviation but also to spatial correlation properties of noise; 

4) If requirements to image filtering time are not very strict, it is reasonable to perform filtering in 
overlapping blocks since it produces considerable improvement of processed image quality. 

These conclusions concerning DCT based denoising main properties lead to necessity of solving 
several practical tasks in the considered situation of image corruption by non-stationary noise with hardly 
predicted and/or hardly estimated statistical and spatial correlation characteristics: 

1) How to undertake a decision is noise spatially correlated or spatially uncorrelated? 
2) If noise is spatially uncorrelated, how to estimate noise local standard deviation, what is 

accuracy of such estimates, is it appropriate and what to do if it is not appropriate? 
3) If noise is spatially correlated, how to estimate noise standard deviation and spectral 

correlation characteristics of noise, what is accuracy of such estimates, is it appropriate for practice and 
what to do if it is not appropriate? 

Below we mainly address first two questions and provide some useful information for answering 
the third question in future. 
  

4. Local scale estimation and heterogeneity indication 
4.1. Local variance estimation for spatially uncorrelated noise 
To partly answer questions 2) and 3), one needs a method for estimating noise local standard 

deviation for an image at hand. Some initial imagination about methods for local estimation of noise 
standard deviation (variance) can be obtained from literature that addresses the issues of blind evaluation 
of noise variance in images [21, 23, 30, 31, 44] and locally adaptive filtering [7, 11, 45]. First, estimation 
can be carried out is spatial or spectral (wavelet, DCT) domains. Second, only in the case of pure additive 
i.i.d. noise, blind estimation can be performed by processing entire image [44]. In other cases, estimation 
is carried out by dividing an image into blocks or by searching and analyzing image homogeneous 
fragments [23]. Therefore, peculiarities of the estimates obtained in such blocks can be of interest in 
connection with our task. 

Standard local estimates formed in blocks in spatial domain 

( ( ) ( )( )
7 7 22 , , 63

+ +

= =

= −∑∑
n m

c pq bl
p n q m

n m I I n mσ , ( ),blI n m  denotes mean for an nm-th block) are 

characterized by the following properties. For image homogeneous blocks, they are quite close to the true 

values of local variance ( ) ( )
7 7 22 , 63

+ +

= =

= −∑∑
n m

tr
tr pq pq

p n q m
n m I Iσ , but for image heterogeneous blocks the 

values of ( )2 ,c n mσ  are considerably larger than the corresponding values of ( )2 ,tr n mσ . On one hand, 

this means that the values of ( ),c n mσ  are unable to serve well for estimating local standard deviation of 
non-stationary noise [25]. On the other hand, these properties are effectively exploited in hard-switching 
locally adaptive filter design [7, 11, 45]. For any a priori known dependence ( )2 =loc locf Iσ , it is possible 



to estimate ( ),blI n m , to determine predicted ( ) ( )( )2 , ,=loc bln m f I n mσ  and to apply some noise 

suppressing filter (e.g., DCT-based filter) if ( ) ( )2 2, ,≤c locn m n mσ τσ  or good edge/detail preserving filter 

(e.g., sigma [26] or center weighted median [46] filters) if ( ) ( )2 2, ,>c locn m n mσ τσ  where τ  is the 
parameter commonly set about 1.3. Details and particular examples of such design can be found in 
[11,45]. 
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Fig. 3. Histograms of ( )ˆ ,c n mσ  (a) and ( )ˆ ,ort n mσ  (b) for the image Barbara, 2 100=addσ . 
 
Peculiarities of the estimates ( )2 ,c n mσ  discussed above are illustrated in Fig. 3,a for one of the 

standard test images, Barbara, corrupted by i.i.d. pure additive Gaussian naise with variance 2 100=addσ . 

As it is seen, the values of ( )ˆ ,c n mσ  for the considered noisy image can be by 5...6 times larger than 

addσ . This shows that estimates ( )ˆ ,c n mσ  are very sensitive to image heterogeneities. 
Another approach presumes estimation of noise standard deviation in spectral domain. The basic 

assumption put behind the corresponding techniques [9, 30, 44] is that after applying an efficient data 
decorrelating orthogonal transform, true image information is concentrated in a rather small percentage of 
spectral components with large absolute values whilst remainder spectral components mainly relate to 
noise. Thus, by some processing of their statistics that should be robust to outlier data it is possible to 
estimate noise standard deviation. 

Consider first the case of spatially uncorrelated noise. One possible way to carry out estimation of 
local standard deviation of noise in a block is to obtain a local estimate as 

 

( ) ( ){ }ˆ , 1.483med , , , , 0,...,7; 0,...,7 except 0 0ort n m D k l n m k l k lσ = = = = ∧ = ,      (3) 

 
where med{.} denotes a sample median. In fact, the operation (3) exploits known median of absolute 
deviations (MAD) estimate [2] to characterize sample data scale under assumption of Gaussian 
contaminated distribution. The histogram of ( )ˆ ,ort n mσ  is presented in Fig. 3,b. As seen, this estimate of 

noise standard deviation is more accurate than ( )ˆ ,c n mσ , its largest values are only 2…3 times larger 

than addσ . Certainly, such accuracy cannot be considered good. But one should keep in mind that for data 
samples of small size (63 elements for the considered case) it is theoretically impossible to provide high 
accuracy of scale estimation. Recall that we rely on hypothesis of local quasi-stationarity of noise. 

More detailed analysis of ( )ˆ ,ort n mσ  [25, 29] has shown that the values of ( )ˆ ,ort n mσ  

sufficiently larger than those of ( ),tr n mσ  are observed in image heterogeneous regions. Thus, although 

the estimates ( )ˆ ,ort n mσ  are more accurate and robust with respect to image content than ( )ˆ ,c n mσ , 



they are not as accurate as desirable (appropriate). A question is what is desirable? An answer is that a 
local estimate ( ( )ˆ ,ort n mσ  or some other one) should be within the limits [0.8 ( ),n mμσ ;1.2 ( ),n mμσ ]. 
This requirement indirectly follows from results presented in the paper [47]. As it follows from analysis 
of the histogram in Fig. 3,b, this requirement is not satisfied for quite many local estimates ( )ˆ ,ort n mσ . 
This means that the problem of designing accurate local estimators of noise standard deviation remains. 
Unfortunately, till the moment we are unable to propose a better solution to this problem. 

Here it is worth mentioning that if an estimate ( )ˆ ,ort n mσ  is considerably larger than ( ),tr n mσ  

and ( )ˆ ,ort n mσ  is used for local threshold calculation as ( ) ( )ˆ, 2.6 ,ortT n m n mσ= , then oversmoothing 
for the corresponding nm-th block can be observed. One way how to partly get around this shortcoming 
will be described in the next Section. 

 
4.2. Local variance estimation for spatially correlated noise 
Estimation of local variance for spatially correlated noise is even more difficult than for spatially 

uncorrelated. One reason is that additional ambiguity appears. It concerns spatial correlation 
characteristics that can be also unknown. There can be different practical situations and, respectively, 
different initial assumptions on spatial correlation characteristics of noise. A most general assumption is 
that only few neighboring pixels have high correlation of noise and there is practically no periodicity and 
correlation of noise for pixels that are located quite far away from each other. In other words, one can 
suppose that a 2D spatial auto correlation function (ACF) looks something like that one presented in Fig. 
4 where there is a main lobe which is not delta-function and ACF side lobes are quite small. At the same 
time, other parameters of ACF can in practice vary. For example, main lobe widths for horizontal and 
vertical cross-sections of the main lobe can be equal or different as the latter holds for the ACF in Fig. 4.    

 

 
Fig. 4. An example of 2-D ACF of noise obtained for 32x32 homogeneous fragment  

of L-band SAR image  
 
 Another feature of spatially correlated noise is that its spatial correlation properties can be 
practically constant for an entire image or they can be different for different fragments. For example, 
spatial correlation properties of noise can vary as a function of distance from an imaging system to a 
sensed surface (object). This case is, probably, the most complicated for designing methods intended for 
blind image processing (filtering, edge detection, reconstruction).   

Thus, we would like to stress basic difficulties of analyzing and processing images corrupted by 
spatially correlated noise. These difficulties are the following. First, there is a wide variety of possible 
models and variants to simulate such noise. Second, image processing methods should perform well 
enough for certain limits of variation of such models’ parameters and these limits are not always known a 
priori. Third, if, at least, noise type is a priori known and spatial correlation characteristics are spatially 
invariant, this simplifies the task. But for non-stationary noise with a priori unknown dependence 

2 ( )loc locf Iσ =  the task of synthesizing efficient image processing methods becomes extremely difficult. 
Probably, these are the reasons why a number of papers devoted to processing images corrupted by 
spatially correlated noise is very limited. 



Our goal in this subsection is to give information concerning the behavior and properties of local 
estimates of noise standard deviation ( )ˆ ,ort n mσ  and ˆ ( , )c n mσ . Their more detailed analysis can be found 
in our paper [31].  

Again, let’s start from considering image homogeneous regions. A common general tendency for 
both ˆ ( , )c n mσ  and ( )ˆ ,ort n mσ  is that, on the average, they decrease if 2D ACF main lobe width increases 
[31]. However, there is a difference between the estimates ˆ ( , )c n mσ  and ( )ˆ ,ort n mσ . The difference is that 
the estimates ˆ ( , )c n mσ  decrease only slightly especially if a used block (scanning window) size is 
considerably larger than the number of pixels that correspond to the 2D ACF main lobe. On the contrary, 
the estimates ( )ˆ ,ort n mσ  can, on the average, decrease considerably, by several times [31], especially if a 
2D ACF main lobe is rather wide. This difference can be observed from comparison of histograms 
presented in Figures 5 and 3. Note that main attention in comparison should be paid to positions of 
distribution modes that are formed by the estimates obtained for image homogeneous blocks. Thus, 
essential difference in modes’ coordinates for the distributions of the estimates ˆ ( , )c n mσ  and ( )ˆ ,ort n mσ  
can be one indicator that a given image is corrupted by spatially correlated noise. This observation needs 
special thorough study for designing practically applicable algorithms for identification of images 
corrupted by spatially correlated noise.  
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a                                                                  b 
Fig. 5. Histograms of estimates ˆ ( , )c n mσ  (a) and ( )ˆ ,ort n mσ  (b) for the image Barbara corrupted by 

spatially correlated noise with 2 100addσ =   
 
 However, in estimation of local standard deviations of non-stationary spatially correlated noise 
one deals not only with image homogeneous blocks considered above but also with image heterogeneous 
blocks. For the latter type of blocks, the situation is very similar to the case of spatially uncorrelated noise 
discussed in subsection 4.1. Image heterogeneity leads to the estimates ˆ ( , )c n mσ  and ( )ˆ ,ort n mσ  that are 

both larger than ˆ ( , )tr n mσ  for the corresponding blocks. This effect appears itself as heavy right hand tails 
of distribution in both histograms presented in Fig. 5. As earlier (see Fig 3), this tail is heavier for the 
estimates ˆ ( , )c n mσ  that are more sensitive to heterogeneities.  
 The main conclusion that follows from the analysis carried out in this subsection is that both 
estimates ˆ ( , )c n mσ  and ( )ˆ ,ort n mσ  produce very inaccurate evaluations of local standard deviation in the 
case of non-stationary spatially correlated noise. It is then difficult to expect that the corresponding DCT 
based filtering will be efficient. To prove this, let us present output MSE values for two image filtering 
cases. The first is filtering a test image corrupted by spatially correlated noise under condition that both 
noise variance and spatial spectrum are a priori exactly known (MSEakn). Another is filtering the same 
image when there is no a priori information on noise statistics and spectral correlation by setting 

ˆ( , ) 2.6 ( , )ortT n m n mσ=  (MSEunk). Consider a simplest case of pure additive spatially correlated noise with 
variance 100. The obtained values of MSE are presented in Table 1. Besides, in this Table we present the 



values of MSEuncorr for the case of filtering spatially uncorrelated noise with the same variance 2 100addσ =  
and fixed threshold ( , ) 2.6 26addT n m σ= = .  
 

Table 1. MSE values for the compared filtering cases 
Image Lena Barbara Baboon Peppers Goldhill 
MSEakn 33.1 37.2 65.4 33.8 49.6 
MSEunk 54.2 74.7 189.5 74.0 82.3 

MSEuncorr 19.2 23.9 59.0 22.2 30.7 
  

 As it can be seen from comparisons, MSEuncorr values are considerably smaller than MSEakn for all 
tested images. This means that, in general, it is more difficult to remove spatially correlated noise than 
uncorrelated one even in conditions of having full a priori information on noise characteristics at disposal. 
In turn, the values MSEunk are larger than the corresponding values MSEunk. This is due to several reasons. 
The first reason is inaccurate estimation of local standard deviation of noise whereas the second reason is 
that spatial correlation of noise has not been taken into account in filtering when thresholds were set as 

ˆ( , ) 2.6 ( , )ortT n m n mσ= . Both undersmoothing effects have been observed in image homogeneous regions 
and oversmoothing has taken place in heterogeneous regions of output images. Since the image Babbon is 
the most textured image between the considered test ones, the results for it were the worst. MSEunk 
occurred to be larger than 2 100addσ =  for the input image. In other words, filtering has led to worse quality 
of the filtered image than the quality of input image.  
 The presented examples and simulation data demonstrate the following:  

1) For spatially correlated noise, the problem of estimating its local standard deviation is even 
more complex than for spatially correlated noise and its solving needs special study;  

2) To improve filtering performance, it is strongly desirable to know or to pre-estimate noise 
normalized spectrum; if one has correctly identified image homogeneous regions, this task 
can be solved by using the method proposed in [18];  

3) The problems of identifying images corrupted by spatially correlated noise and detecting 
image heterogeneous regions in them remain.  

 
   4.3. Heterogeneity indication in images corrupted by non-stationary noise  
 Recall that our purpose is to discriminate image homogeneous and heterogeneous blocks without 
having a priori information what are true values of local standard deviation of noise in these blocks. 
Recently, a method for this has been proposed [29]. This method is based on the known fact that there are 
differences in statistics of orthogonal transform coefficients for noise and image content. In particular, in 
several papers (see, e.g., [48], statistics of wavelet coefficients has been considered. It has been 
demonstrated that the distribution of wavelet coefficients is composite where two components – Gaussian 

( )G xρ  and Laplacian ( )L xρ  – are both present: ( ) ( ) (1 ) ( )w G Lx p x p xρ ρ ρ= + − . Here p denotes the 
distribution parameter that is quite large for noisy images that contain many image homogeneous regions 
and not a lot of details and texture. The component probability density function (PDF) ( )G xρ  is 
characterized by zero mean and variance 2

Gσ  proportional to noise variance, the PDF component ( )L xρ  
also has zero mean and variance 2

Lσ  that depends upon spatial spectrum properties of image information 
content. Usually the following inequality holds: 2

Lσ > 2
Gσ .  

Similar effects are observed in entire image [30] and in blocks for the distribution ( )DCT xρ  of 
DCT coefficients ( , , , ), 0,...,7, 0,...,7D k l n m k l= =  (the DC coefficient (0,0, , )D n m  was excluded from 
consideration). If a block belongs to image homogeneous region, the parameter p approaches to unity, 
otherwise p is smaller. The Laplacian component of the distribution has heavier tail than Gaussian one 
and it mainly relates to information content of images.  

Thus, to detect heterogeneous blocks, one is able to apply some test on non-Gaussianity of 
( , , , ), 0,...,7, 0,...,7D k l n m k l= = . For this purpose, it has been proposed in [29] to use a parameter 

( , )DCTE n m  that is similar to percentile coefficient of kurtosis (PCK) [49] that for 8x8 blocks is defined as:  
 

(58) (6) (48) (16)( , ) ( ( , ) ( , )) /( ( , ) ( , ))DCTE n m D n m D n m D n m D n m= − −                                 (4)       
 



where ( ) ( , )tD n m  denotes a t-th order statistic (DC coefficient is excluded from consideration). As it is 
seen, ( , )DCTE n m  does not require information on standard deviation of noise to be calculated.   
 Recall that PCK can be used for characterizing tail heaviness for non-Gaussian distributions [49]. 
As so, PCK or its modifications like (4) can serve our goal of discriminating homogeneous and 
heterogeneous blocks of images. The only thing one should remember is that distribution of DCT 
coefficients in an image homogeneous block is close to Gaussian only if noise is spatially uncorrelated. 
Therefore, let us consider this case from the beginning and then see what happens if noise is spatially 
correlated.   
 As it follows from properties of order statistics, nominator in (4) is always not less than 
denominator and, thus, ( , )DCTE n m  is larger than unity. If distribution of DCT coefficients in a block is 
Gaussian, the mean of ( , )DCTE n m  is approximately equal to 2.1. Therefore, setting a threshold DCTT  larger 
than 2.1 can be used for detection of image heterogeneous blocks as  
 

1, ( , )
( , )

0, ( , )

DCT
DCT

DCT
DCT

if E n m T
Det n m

if E n m T
⎧ ≥⎪= ⎨

<⎪⎩
   .                                                 (5)  

 
It is usual for detectors [6, 7] that setting a larger threshold results in less reliable detection but smaller 
probability of false alarm and vice versa. Because of this, some trade-off should be found. We 
recommend setting DCTT  approximately equal to 2.5.  
 Note that (5) is not the edge detection algorithm in strict sense. It is image heterogeneous block 
detector to be used for further filtering. Its performance can be illustrated by the following example. Fig. 
6,a shows the noise-free test image Cameraman. Then, additive i.i.d. noise with variance equal to 100 has 
been added to the image and the detector (5) has been applied. The obtained map of ( , )Det n m  is 
represented in Fig. 6,b where black color pixels correspond to zeroes and white color ones relate to 
unities. As it is seen, edges and other heterogeneities are detected quite well and encountered by wide 
“strips” (in this sense, (5) is not a good edge detector). Certainly, some low contrast object edges and 
textures are not detected and few false detections are present.  
   

   
a                                                              b 

Fig. 6. Original noise-free Cameraman image of size 512x512 pixels (a) and heterogeneity detection map 
(of size 505x505 pixels) for noisy image (b) 

 
    It can be also interesting to see how the distribution of ( , )DCTE n m  looks like. We have determined 
it for the image Cameraman corrupted by pure additive noise (Fig. 7,a) and by Poisson noise (Fig. 7,b). In 
both cases, distributions have maximums (modes) for ( , )DCTE n m  of about 2.1 and heavy right hand tails 
that correspond to image heterogeneous blocks.  
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Fig. 7. Histograms of distributions for ( , )DCTE n m  for the test image Cameraman corrupted by spatially 
uncorrelated additive (a) and Poisson (b) noise   

 
 Consider now the case of spatially correlated noise. Even for image homogeneous blocks the 
distribution of DCT coefficients is not Gaussian and its shape depends upon spatial spectrum of noise. For 
image heterogeneous blocks there are few large amplitude components that additionally make distribution 
more heavier tailed. Examples of distributions of ( , )DCTE n m  for spatially correlated noise are presented in 
Fig. 8 for pure additive and Poisson noises.  
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Fig. 8. Histograms of distributions of ( , )DCTE n m  for the test image Cameraman corrupted by spatially 
correlated additive (a) and spatially correlated Poisson (b) noise 

 
 Again, both histograms have right hand heavy tails that are formed by ( , )DCTE n m  observed for 
image heterogeneous blocks. Mode values for these distributions have moved to larger values in 
comparison to the corresponding histograms in Fig. 7. Positions of histogram modes can be a feature that 
allows discriminating the cases of spatially correlated and uncorrelated noise.  
 This idea needs: a) checking for different test images, noise types, variances and spatial 
correlation characteristics; b) an algorithm for estimation a distribution mode (histogram maximum 
argument); c) a decision rule to decide is noise spatially uncorrelated or not. Fortunately, the algorithm 
for distribution mode estimation exists. Moreover, we have proposed several of them [31, 50, 51]. The 
most advanced one is described in the latest paper [31] and is based on minimal inter-quantile differences 
(distances) and their polynomial approximation for obtaining a more accurate estimate.  
 Thus, it is possible to get an estimate modÊ . A simple decision rule might be comparison of modÊ  
to a threshold thrE . Let us analyze simulation results to get imagination about this threshold, at least, 



approximately. For this purpose, spatially uncorrelated and spatially correlated noises have been 
simulated and added to five test images. Spatially correlated noise has been simulated as i.i.d. noise 
subjected to filtering by 3x3 mean filter, then its variance has been adjusted to have a desired variance. 
Clearly, spatially correlated noise can be simulated by many other methods. However, our goal was to 
obtain initial results and to see what happens for different images and noise types, is there some 
difference between values of modÊ  for spatially correlated and uncorrelated noise. The obtained data are 
presented in Table 2.  
 

Table 2. The estimates modÊ  for the test images corrupted by different types of noise 
Image  Lena Barbara Baboon Peppers Goldhill 

Type of noise 
modÊ  modÊ  modÊ  modÊ  modÊ  

Additive spatially uncorrelated 2.0052 2.0713 2.1412 1.9992 2.0370 
Poisson spatially uncorrelated 2.0030 2.0706 2.1224 1.9963 2.0397 
Additive spatially correlated 2.6831 2.8944 2.4770 2.4163 2.6389 

 
 Analysis of data in Table 2 shows that for spatially uncorrelated noise (additive and Poisson) the 
values modÊ  are smaller than for images corrupted by spatially correlated noise. At the same time, modÊ  
depends upon an image. For images with larger complexity (more texture, edges, details), the values modÊ  
are larger (consider the data for the image Baboon) than for less complex images like Lena and Peppers. 
It is possible to set a threshold thrE  the use of which allows discriminating spatially correlated and 
uncorrelated noise cases. It seems reasonable to set it about 2.2. However, this task needs more thorough 
study to give a final answer.   
 
 5. Local adaptive filtering of non-stationary noise 
 In this Section, we consider the case of filtering non-stationary spatially uncorrelated noise 
supposing that it has been identified by the algorithm proposed in the previous subsection. Recall that 
now we have the algorithm (3) for local estimation of noise standard deviation (although not 
appropriately accurate) and the algorithm (5) for discrimination of image homogeneous and 
heterogeneous blocks (although misclassifications for this algorithm are possible). We also know that the 
estimates ˆ ( , )ort n mσ  are larger than ˆ ( , )tr n mσ  for image heterogeneous blocks and, if the local threshold is 
set as ˆ( , ) 2.6 ( , )DCTT n m n mσ= , this leads to image oversmoothing. Thus, the idea proposed in [29] is to 
apply one more mechanism of local adaptation, i.e. to adapt not only to local scale of data in a given 
block but also to local content. The idea is to set some smaller local threshold than ˆ( , ) 2.6 ( , )DCTT n m n mσ=  
to avoid oversmoothing. Then, a simple algorithm of such adaptation is  
 

ˆ2.6 ( , ), ( , ) 0
( . )

ˆ ( . ), ( , ) 1
DCT

het DCT

n m if Det n m
T n m

n m if Det n m
σ

β σ
=⎧

= ⎨ =⎩
  ,                                                   (6) 

 
where hetβ  is the parameter used for filtering image heterogeneous blocks and a value of this parameter 
should be not larger than 2.6. However, a question is what is optimal or, at least, reasonable value of hetβ ? 

To answer this question we have carried out a special study [29] using not only the standard 
quantitative criterion of filter performance (PSNR) but also parameters that characterize the visual quality 
of filtered images, namely, PSNR-HVS [39], PSNR-HVS-M [40], and MSSIM [52]. These results are 
presented below in Tables 3 and 4. Analysis of these data shows the following. Due to hard switching 
adaptation (5), filter performance has been sufficiently improved according to all considered criteria. A 
reasonable practical choice seems to be hetβ =1.1. Further decreasing of hetβ  leads to increase of MSE and 
decrease of PSNR-HVS, PSNR-HVS-M, and MSSIM.  

 
Table 3. Performance characteristics for the test image Barbara corrupted by pure additive noise with 

variance 100 
hetβ  2.6 2.3 2.0 1.7 1.4 1.1 

MSE 33.95 31.40 29.36 27.95 27.31 27.46 



PSNR-HVS 30.70 30.96 31.18 31.34 31.42 31.43 

PSNR-HVS-M 34.22 34.48 34.71 34.87 34.95 34.98 

MSSIM 0.980 0.981 0.982 0.982 0.983 0.983 

 
Table 4. Performance characteristics for the test image Lena corrupted by pure additive noise with 

variance 100 
hetβ  2.6 2.3 2.0 1.7 1.4 1.1 

MSE 24.25 23.36 22.56 21.95 21.56 21.46 

PSNR-HVS 31.49 31.62 31.74 31.84 31.89 31.91 

PSNR-HVS-M 34.52 34.58 34.69 34.75 34.79 34.81 

MSSIM 0.977 0.977 0.978 0.978 0.978 0.978 

 
 However, these are only preliminary conclusions done for two particular images, one type of 
noise and one particular value of its variance. Because of this, we have also carried out simulations for 
Poisson spatially uncorrelated noise. The obtained results (output MSE) are given in Table 5 for five test 
images. As it is seen, again we have improvements and they are the largest for hetβ =1.1 for four of five 
images (the best results are marked as Bold). However, for the test image Baboon the filter performance 
is not good even for hetβ =1.1 and smaller hetβ  is needed to provide smaller output MSE. However, even 
in this case the output MSE occurs to be only slightly smaller than input MSE (132.9). This shows that it 
is difficult to expect good performance of the proposed adaptive filter for highly textural images.  
 

Table 5. Output MSE values for five test images corrupted by Poisson spatially uncorrelated noise  
hetβ  2.6 2.3 2.0 1.7 1.4 1.1 

BABOON 186.6 174.2 161.7 150.2 140.6 132.9 

GOLDHILL 43.2 41.7 40.2 38.8 37.7 37.0 

PEPPERS 28.1 27.3 26.6 25.9 25.4 25.1 

BARBARA 36.1 33.5 31.5 30.0 29.4 29.6 

LENA 24.2 23.4 22.6 22.0 21.6 21.5 

 
 According to (5), only two values of β can be used in setting a local threshold, namely one equal 
to 2.6 and another, smaller than 2.6 (e.g., 1.1). It is a simple practical solution but it is not the only 
possible option. For example, it is possible to set β as some function of ( , )DCTE n m . An initial requirement 
is that this function should decrease if ( , )DCTE n m  increases. Since it is difficult to provide a theoretically 
optimal function, we decided to carry out preliminary study using a simple exponential function  
 

β(n,m) =2.6(2/ ( , )DCTE n m )α ,                                                   (7) 
 

where α>0 is a parameter. The ratio 2/ ( , )DCTE n m  is selected for providing β(n,m) of about 2.6 for image 
homogeneous blocks where mean of ( , )DCTE n m  is approximately equal to 2.  
 Simulations have been carried out for two images (Lena and Baboon) that considerably differ 
from each other in their content (percentage of heterogeneous regions). Pure additive spatially 
uncorrelated noise with variance 100 was considered. The obtained output MSEs are presented in Table 6. 
It is interesting that the tendencies for the considered images are contradictory. Whilst for the image Lena 
α about 1.5 is quasi-optimal (minimal output MSE is produced) and further increasing of α leads to 
increase of output MSE, for the image Baboon optimum is not reached even for α=4.0. Thus, practical 
choice is problematic and it can be a topic for future research. As initial practical recommendation, we 
can propose to use α=3.0. Note that for the image Baboon the output MSE in this case is sufficiently 
smaller than for the hard switching locally adaptive filter (see data in Table 5).   
     

Table 6. Output MSE for locally adaptive filter based on (7) 



α 1.5 2.0 2.5 3.0 3.5 4.0 
Lena 20.7 20.8 21.4 22.2 23.5 24.6 

Baboon 114.1 103.0 93.5 87.2 82.0 78.9 
 

Let us give an example of applying the designed locally adaptive filter based on (7) to the image 
Goldhill corrupted by Poisson spatially uncorrelated noise. The original noise free image is shown in Fig. 
9,a and the noisy image is demonstrated in Fig. 9,b (pure additive noise with variance 100). The field of 
the parameter ( , )DCTE n m  is presented in Fig. 9,c. As it is seen, this parameter locates the fragments with 
image heterogeneities. The processed image is represented in Fig. 9,d. Noise is considerably removed 
whilst edges and fine details are preserved well enough.  
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Fig. 9. Noise free image Goldhill (a), its noisy version (b), visualized field of ( , )DCTE n m  (lighter pixels 
correspond to larger values) (c), and the filtered image (d) 

 
6. Examples for real life images  

 Let us present two examples of applying the designed locally adaptive DCT filter to real life 
images. The first example is a sub-band 224 image of hyperspectral AVIRIS data Lunar Lake [53] (Fig. 
10,a). It is corrupted by noise that is visually seen. The visualized field of ( , )DCTE n m  is presented in Fig. 
10,b. It indicates positions of image heterogeneous regions well. Analysis of the histogram of ( , )DCTE n m  



shows that percentage of image heterogeneous blocks is not too large. Histogram maximum modÊ  is 
about 1.97. This indicates that noise is spatially uncorrelated. The field of the estimates ˆ ( , )ort n mσ  is 
visualized in Fig. 10,c. Its analysis shows that it has larger values in image heterogeneous regions. 
Finally, the filtered image is represented in Fig. 10,d. Useful information is preserved and noise is 
sufficiently suppressed.  
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Fig. 10. Noisy sub-band image Lunar Lake (a), visualized field of ( , )DCTE n m  (lighter pixels correspond to 
more homogeneous regions) (b), visualized estimated of noise standard deviation ˆ ( , )ort n mσ  (c), and the 

filtered image (d) 
 

 One more practical situation when noise is not stationary takes place in side look radar imaging 
[21]. In general, the dominant component of noise is multiplicative but additive noise is present as well. 
The paper [21] describes the way how to evaluate statistics of both components but here we would like to 
show how image filtering  can be performed without such evaluation. First, we have found modÊ  for the 
Ka-band real life radar image presented in Fig. 11,a. modÊ  is equal to 2.32. Thus, noise seems to be 
spatially correlated although it is possible to expect that spatial correlation is not large. The filtered image 
is presented in Fig. 11,d and its quality is quite high. For spatially correlated noise we used β(n,m) 
=2.6( modÊ / ( , )DCTE n m )α . 

It is also interesting to see at behavior of visualized estimated of noise standard deviation 
ˆ ( , )ort n mσ  (Fig. 11,c). As it is seen, the values ˆ ( , )ort n mσ  are larger (lighter in the visualized map) for 

image regions with larger local mean. This indicates that noise is signal dependent. This conclusion is in 
agreement with traditional assumption on mainly multiplicative nature of noise. Fig. 11,b represents the 



visualized field of ( , )DCTE n m  values. As it is seen, large (light) pixels indicate discontinuities and texture 
in the original noisy image.  
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Fig. 11. Noisy Ka-band Radar image (a), visualized field of ( , )DCTE n m  (lighter pixels correspond to more 
homogeneous regions) (b), visualized estimated of noise standard deviation ˆ ( , )ort n mσ  (c), and the filtered 

image (d) 
 
 The presented results show that the designed filter can be successfully applied to real life images.  
 

Conclusions and future work 
 An important practical task of removing non-stationary noise with a priori unknown statistical 
and spatial correlation characteristics is addressed in this paper. It is demonstrated that it can be solved on 
basis of locally adaptive DCT based filtering. The first local adaptation mechanism is blind estimation of 
noise standard deviation in image blocks of fixed size. The second mechanism of local adaptation deals 
with discrimination of locally active (heterogeneous) and passive (homogeneous) image regions on basis 
of the introduced local parameter ( , )DCTE n m  and its use in setting a local threshold. Besides, analysis of 
this parameter histogram allows discriminating the cases of spatially uncorrelated (simpler case) and 
correlated (more complex case) noise. The latter case requires additional studies in order to design a 



method for estimating spatial (DCT) normalized spectrum that can be incorporated in frequency 
dependent threshold setting in order to further improve filtering performance.  
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