Распространение энергии по направляющим системам

Процесс передачи энергии по направляющим системам характеризуется:

- распространением энергии вдоль системы;
- величиной внешнего поля, создаваемого в окружающем пространстве.

Распространение энергии вдоль направляющей системы связано с *потерями энергии* и характеризуется ее *затуханием*.

Внешнее электромагнитное поле в *ближней зоне* проявляется в виде *ин- дукции* и является причиной перехода энергии на соседние цепи и появления в них мешающих влияний.

В дальней зоне электромагнитное поле приводит к излучению энергии и распространению ее на большие расстояния.

Ближняя зона — ближайшая к источнику область пространства, для которой длина волны существенно больше расстояния от источника ($\lambda >> r$).

Дальняя зона – область пространства, в которой расстояние от источника существенно превышает длину волны ($\lambda << r$).

Процессы индукции относятся к сравнительно низкому диапазону частот ($\lambda > a$), а процессы излучения охватывают очень высокие частоты ($\lambda < a$), а – расстояние между проводами.

Распространение с учетом индукции

Процесс распространения *вдоль направляющей системы* характеризуется *первичными* и *вторичными* параметрами передачи

первичные параметры	вторичные параметры	
R – активное сопротивление;	α – коэффициент затухания;	
L – индуктивность;	β – коэффициент фазы;	
С – емкость;	$Z_{\rm B}$ – волновое сопротивление;	
G – проводимость изоляции;	v – скорость распространения.	

Основной показатель системы – *затухание* α состоит из двух частей: затухания в *металле* ($\alpha_{\rm M}$) и затухания в *диэлектрике* ($\alpha_{\rm J}$): $\alpha = \alpha_{\rm M} + \alpha_{\rm J}$.

Затухание в *металле* обусловлено тем, что часть электромагнитной энергии поглощается проводами и рассеивается в виде тепловых потерь. Это явление учитывается первичными параметрами: *сопротивлением* и *индуктивностью*.

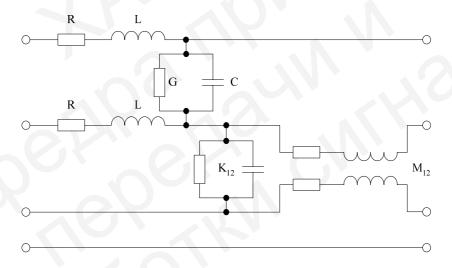
Затухание в *диэлектрике* связано с поляризацией диэлектрика и при переменном поле потерями энергии на диэлектрическую поляризацию. Эти процессы характеризуются первичными параметрами: *емкостью* и *проводимостью изоляции*.

Затухание в металле с увеличением частоты возрастает по закону \sqrt{f} , а затухание в диэлектрике – по закону f.

Индуцированный переход энергии на соседние цепи в ближней зоне обусловлен электрическим и магнитным взаимодействием между цепями.

При прохождении тока по какой-либо цепи на проводах этой цепи образуются *заряды*. Эти заряды создают *электрическое поле*, силовые линии которого, соприкасаясь с соседними проводами, наводят в них помеху и проявляются в виде мешающего влияния *электрического* характера.

Образующиеся вокруг проводов *силовые линии магнитного поля* воздействуют на соседние провода, наводят в них токи помех и проявляются в виде мешающего влияния *магнитного* характера.



Электрическое влияние характеризуется электрической связью K_{12} , а магнитное — магнитной связью M_{12} . Оба коэффициента относятся к первичным параметрам влияния.

В качестве *вторичных* параметров применяются *переходные затухания* на ближнем A_0 и дальнем A_ℓ концах линии.

С увеличением частоты переменного тока влияние между цепями существенно возрастает.

Распространение с учетом излучения

Процесс *излучения* высокочастотной энергии связан с *потерями на излучение*. Поэтому затухание направляющей системы в этом режиме будет состоять из трех составляющих:

$$\alpha = \alpha_{\rm M} + \alpha_{\rm J} + \alpha_{\rm W}$$

где $\alpha_{\rm M}$ – потери энергии в проводах, экране, оболочке и других окружающих металлических массах на нагревание за счет вихревых токов;

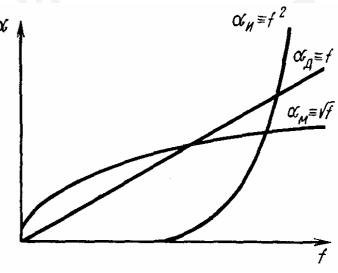
 $\alpha_{\rm д}$ — потери энергии в изоляции на диэлектрическую поляризацию, зависящие от качества диэлектрика (є и tg δ);

 $\alpha_{\rm u}$ – потери высокочастотной энергии на излучение, связанные с антенным эффектом системы.

Частотная зависимость этих составляющих потерь различна. Потери в металле изменяются по закону \sqrt{f} , потери в диэлектрике растут с частотой линейно, а потери на излучение резко α возрастают с увеличением частоты по α

Потери на излучение, имеющие малый удельный вес в области низких частот, резко возрастают и становятся доминирующими в области сверхвысоких частот.

закону f^2 .



Исходные принципы расчета направляющих систем

Уравнения Максвелла позволяют точно решить практически любую электродинамическую задачу, включая передачу сигналов связи по различным направляющим системам в разных диапазонах частот.

Однако во многих случаях крайне сложно, а иногда и нецелесообразно искать точные решения на базе электродинамики, поскольку существуют достаточно точные приближенные методы решения задач различных классов.

Такими, наиболее характерными методами, которые можно считать предельными для электродинамики, являются, с одной стороны, *методы теории* электрических цепей, а с другой стороны, *теории геометрической оптики*.

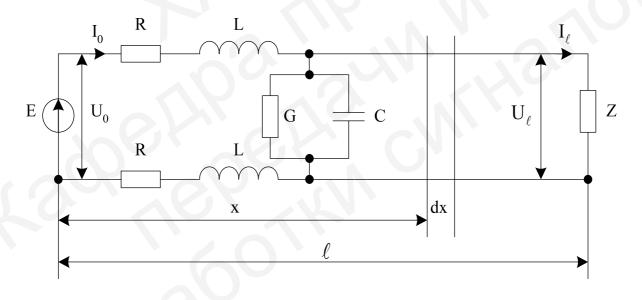
В первом случае совершается переход от волновых процессов к колебательным (длина волны $\lambda \to \infty$), а во втором случае – к лучевым (геометрическим) процессам ($\lambda \to 0$).

В зависимости от соотношения длины волны λ и поперечных геометрических размеров D решение задач передачи по направляющей системе можно подразделить на три области:

Процессы	Квазистационарные	Электродинамические (резонансные)	Квазиоптические
Соотношение D/λ	<<1	≈1	>>1
Частоты, Гц	от 0 до 10 ⁶⁻⁸	109-12	10 ¹³⁻¹⁵
Длины волн	километровые, метровые	сантиметровые, миллиметровые	микронные
Теория	теория цепей	электродинамика	оптика
Явления	колебательные	волновые	лучевые
Уравнения	однородной линии (законы Ома, Кирхгофа)	Максвелла	Гюйгенса, Френеля
Тип волны	TEM	ЕиН	НЕ и ЕН
Направляющая система	воздушная линия, симметричная линия, коаксиальная линия	волновод, коаксиальная линия	оптический световод

Уравнение однородной линии

Рассмотрим однородную длинную линию с первичными параметрами: R, L, C и G.



В начале линии имеется генератор напряжения с ЭДС E и внутренним сопротивлением Z_0 , в конце – нагрузка Z.

Необходимо установить взаимную связь тока I(x) и напряжения U(x) в любой точке цепи (x) с ее параметрами R, L, C и G, зная значения напряжения и тока в начале I_0 , U_0 или в конце цепи I_ℓ , U_ℓ .

Выделим на расстоянии х от начала цепи бесконечно малый участок dx. Обозначим ток, проходящий по элементу цепи dx, через I, а напряжение между проводниками через U. Тогда для участка dx можно записать:

$$- \text{падение напряжения} \\ - \frac{dU}{dx} = I \big(R + j \omega L \big); \\ - \frac{dI}{dx} = U \big(G + j \omega C \big)$$

Исключим величину I из первого уравнения, взяв вторую производную:

$$-\frac{d^2U}{dx^2} = \frac{dI}{dx}(R + j\omega L).$$

Подставим в это выражение уравнение для тока:

$$\frac{d^2U}{dx^2} = U(R + j\omega L)(G + j\omega C).$$

Введем обозначение $\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$, тогда:

$$\frac{\mathrm{d}^2\mathrm{U}}{\mathrm{dx}^2} = \gamma^2\mathrm{U} \,.$$

Решение данного уравнения имеет вид $U = Ae^{\gamma x} + Be^{-\gamma x}$. Дифференцируя данное уравнение, получим выражение для тока:

$$\frac{dU}{dx} = A\gamma e^{\gamma x} - B\gamma e^{-\gamma x} = \gamma \Big(Ae^{\gamma x} - Be^{-\gamma x}\Big).$$

Подставив его в исходное уравнение для падения напряжения, получим:

$$I(R + j\omega L) = -\gamma (Ae^{\gamma x} - Be^{-\gamma x}).$$

Введем обозначение $Z_{_B} = (R + j\omega L)/\gamma = \sqrt{(R + j\omega L)/(G + j\omega C)}$. Подставляя его в предыдущее выражение, получаем:

$$IZ_{B} = -Ae^{\gamma x} + Be^{-\gamma x}.$$

В результате получаем два уравнения с двумя неизвестными А и В –

$$U = Ae^{\gamma x} + Be^{-\gamma x}; IZ_{_B} = -Ae^{\gamma x} + Be^{-\gamma x}.$$

Для нахождения этих неизвестных воспользуемся граничными условиями при $\mathbf{x}=0$: $\mathbf{U}\big|_{\mathbf{x}=0}=\mathbf{U}_0$; $\mathbf{I}\big|_{\mathbf{x}=0}=\mathbf{I}_0-\mathbf{U}_0=\mathbf{A}+\mathbf{B}$; $\mathbf{I}_0\mathbf{Z}_{\scriptscriptstyle B}=-\mathbf{A}+\mathbf{B}$, откуда:

$$A = (U_0 - I_0 Z_B)/2;$$
 $B = (U_0 + I_0 Z_B)/2.$

Подставляя полученные значения А и В, получаем:

$$\begin{split} U = & \left[\left(U_0 - I_0 Z_{_B} \right) \! / 2 \right] e^{\gamma x} + \left[\left(U_0 + I_0 Z_{_B} \right) \! / 2 \right] e^{-\gamma x}; \\ I Z_{_B} = & - \left[\left(U_0 - I_0 Z_{_B} \right) \! / 2 \right] e^{\gamma x} + \left[\left(U_0 + I_0 Z_{_B} \right) \! / 2 \right] e^{-\gamma x}. \end{split}$$

Произведя соответствующие преобразования и учитывая, что $\text{ch } \gamma x = \left(e^{\gamma x} + e^{-\gamma x}\right) \! / \! 2 \ \text{и sh } \gamma x = \left(e^{\gamma x} - e^{-\gamma x}\right) \! / \! 2 , \text{ получаем значения напряжения } U_x \text{ и тока } I_x \text{ в любой точке цепи } x \text{:}$

$$\begin{cases} \mathbf{U}_{\mathbf{x}} = \mathbf{U}_{0} \operatorname{ch} \gamma \mathbf{x} - \mathbf{I}_{0} \mathbf{Z}_{\mathbf{B}} \operatorname{sh} \gamma \mathbf{x}; \\ \mathbf{I}_{\mathbf{x}} = \mathbf{I}_{0} \operatorname{ch} \gamma \mathbf{x} - \left(\mathbf{U}_{0} / \mathbf{Z}_{\mathbf{B}}\right) \operatorname{sh} \gamma \mathbf{x}. \end{cases}$$